» »

Все и подробно о причинах многообразия веществ. Разнообразие веществ

31.12.2023

К органическим веществам относят углеродсодержащие вещества, преимущественно образующиеся в живых организмах. На сегодня, многие органические вещества могут быть получены искусственно в лаборатории. Синтезировано большое количество органических соединений, не встречающихся в природе.

Общее число известных органических веществ превышает 10 миллионов, в то время как неорганических - около 100 тысяч. Такое многообразие органических соединений связано со способностью атомов углерода соединяться в цепи различной длины . Связи между атомами углерода могут быть одинарными и кратными: двойными, тройными. При этом вещества могут иметь одинаковую молекулярную формулу, но разное строение и свойства (это явление получило название изомери́и).

В состав органических веществ входят углерод, водород, кислород, а также азот, фосфор, сера. Кроме того, могут входить практически любые элементы.

Углеводороды - вещества, состоящие из двух элементов: углерода и водорода.

Метан (его также называют болотный, рудничный газ, т. к. он образуется при разложении органических остатков на дне болот, а также выделяется из пластов каменного угля в рудниках). Состоит из одного атома углерода, соединенного ковалентными связями с четырьмя атомами водорода. Молекулярная формула CH 4 . Структурная формула показывает порядок связи атомов в молекуле:
H
l
H – C – H
l
H

Чтобы правильно составлять структурные формулы органических веществ, нужно помнить, что атомы углерода образуют по 4 связи , изображаемые черточками (т. е. валентность углерода по числу связей равна четырем. В органической химии преимущественно используется именно валентность по числу связей).

В 10–11 классах изучается, что молекула метана имеет форму треугольной пирамиды - тетраэдра, подобно знаменитым египетским пирамидам.

Этилен C 2 H 4 состоит из двух атомов углерода, соединенных двойной связью:

Угол между связями составляет 120º (электронные пары,образующие связь отталкиваются и располагаются на максимальном расстоянии друг от друга).

Ацетилен C 2 H 2 содержит тройную связь:
H – C ≡ C – H

В качестве примера кислородсодержащих органических веществ можно назвать метиловый (древесный) спирт CH 3 OH (систематическое название метанол),

этиловый спирт C 2 H 5 OH (этанол),

уксусную кислоту CH 3 COOH

(кислотный остаток уксусной кислоты CH 3 COO − обычно находится в нижней строчке таблицы растворимости, поэтому если забудете формулу, возьмите таблицу растворимости - она должна быть на экзамене - и добавьте к кислотному остатку водород)

Причины многообразия химических веществ

В настоящее время причины многообразия химических веществ принято объяснять двумя явлениями - изомерией и аллотропией.

Вещества, имеющие одинаковый состав, но разное химическое или пространственное строение, а следовательно, и разные свойства, называют изомерами .

Основные виды изомерии :

Структурная изомерия, при которой вещества различаются порядком связи атомов в молекулах: изомерия углеродного скелета

изомерия положения кратных связей:

заместителей

изомерия положения функциональных групп

АЛЛОТРОПИЯ, существование химических элементов в двух или более молекулярных либо кристаллических формах. Например, аллотропами являются обычный кислород O2 и озон O3; в этом случае аллотропия обусловлена образованием молекул с разным числом атомов. Чаще всего аллотропия связана с образованием кристаллов различных модификаций. Углерод существует в двух четко различающихся кристаллических аллотропных формах: в виде алмаза и графита. Раньше полагали, что т.н. аморфные формы углерода, древесный уголь и сажа, - тоже его аллотропные модификации, но оказалось, что они имеют такое же кристаллическое строение, что и графит. Сера встречается в двух кристаллических модификациях: ромбической (a-S) и моноклинной (b-S); известны по крайней мере три ее некристаллические формы: l-S, m-S и фиолетовая. Для фосфора хорошо изучены белая и красная модификации, описан также черный фосфор; при температуре ниже -77° С существует еще одна разновидность белого фосфора. Обнаружены аллотропные модификации As, Sn, Sb, Se, а при высоких температурах - железа и многих других элементов.

Энантиотропные и монотропные формы. Кристаллические модификации химического элемента могут переходить одна в другую по-разному, что можно проиллюстрировать на примерах серы и фосфора. При обычной температуре стабильной является ромбическая модификация серы, которая при нагревании до 95,6° С и давлении 1 атм переходит в моноклинную форму. Последняя при охлаждении ниже 95,6° С вновь переходит в ромбическую форму. Таким образом, переход одной формы серы в другую происходит при одной и той же температуре, и сами формы называются энантиотропными. Другая картина наблюдается для фосфора. Белая его форма может превращаться в красную почти при любой температуре. При температурах ниже 200° С процесс протекает очень медленно, но его можно ускорить с помощью катализатора, например иода. Обратный же переход красного фосфора в белый невозможен без образования промежуточной газовой фазы. Красная форма стабильна во всем диапазоне температур, где она находится в твердом состоянии, тогда как белая нестабильна при любой температуре (метастабильна). Переход из нестабильной формы в стабильную в принципе возможен при любой температуре, а обратный - нет, т.е. определенная точка перехода отсутствует. Здесь мы имеем дело с монотропными модификациями элемента. Две известные модификации олова энантиотропны. Модификации углерода - графит и алмаз - монотропны, причем стабильной является форма графита. Красная и белая формы фосфора монотропны, а две белые его модификации энантиотропны, температура перехода равна -77° С при давлении 1 атм.

Слайд 2

Цель урока:

рассмотреть состав, строение веществ и выявить причины их многообразия.

Слайд 3

Вещества (по строению) молекулярные, или дальтониды (имеют постоянный состав, кроме полимеров) немолекулярные, или бертоллиды (имеют переменный состав) атомные ионные металлические H2, P4,NH3 , CH4,CH3COOH P, SiO2 Cu, Fe NaCl, KOH

Слайд 4

Закон постоянства состава веществ

Жозеф Луи Пруст (1754 – 1826) – французский химик – аналитик. Исследование состава различных веществ, выполненное им в 1799-1803 годах, послужило основой открытия закона постоянства состава для веществ молекулярного строения. Каждое химически чистое вещество независимо от местонахождения и способа получения имеет постоянный состав и свойства.

Слайд 5

Что показывает молекулярная формула СН4?

Вещество сложное, состоит из двух химических элементов(С,Н). Каждая молекула содержит 1 атом С, 4 атома Н. Вещество молекулярного строения, КПС. Mr= ω(С) = ω(Н) = m(С):m(H) = 12: 16= 0,75=75% 12+1 4=16 1-0,75=0,25=25% 12:4 =3:1

Слайд 6

Каковы же причины многообразия веществ?

  • Слайд 7

    В начале XX века в Петербурге на складе военного оборудования произошла скандальная история: во время ревизии к ужасу интенданта выяснилось, что оловянные пуговицы для солдатских мундиров исчезли, а ящики, в которых они хранились, доверху заполнены серым порошком. И хотя на складе был лютый холод, горе-интенданту стало жарко. Еще бы: его, конечно, заподозрят в краже, а это ничего, кроме каторжных работ, не сулит. Спасло бедолагу заключение химической лаборатории, куда ревизоры направили содержимое ящиков: «Присланное вами для анализа вещество, несомненно, олово. Очевидно, в данном случае имело место явление, известное в химии под названием «оловянная чума». ?

    Слайд 8

    «Оловянная чума»

    Белое олово устойчиво при t0 >130С Серое олово устойчиво при t0

    Слайд 9

    Аллотропия – способность атомов одного химического элемента образовывать несколько простых веществ. Аллотропные модификации – это простые вещества, образованные атомами одного и того же химического элемента.

    Слайд 10

    Аллотропные модификации кислорода

    О2- кислород бесцветный газ; не имеет запаха; плохо растворим в воде; температура кипения -182,9 С. О3 – озон («пахнущий») газ бледно-фиолетового цвета; имеет резкий запах; растворяется в 10 раз лучше, чем кислород; температура кипения -111,9 С; наиболее бактерициден.

    Слайд 11

    Аллотропные модификации углерода

    Графит Алмаз Мягкий Имеет серый цвет Слабый металлический блеск Электропроводен Оставляет след на бумаге. Твёрдый Бесцветный Режет стекло Преломляет свет Диэлектрик

    Слайд 12

    Фуллерен Карбин Графен Твёрже и прочнее алмаза, но растягивается на четверть своей длины, точно резина. Графен не пропускает газы и жидкости, проводит тепло и электричество лучше, чем медь. Мелкокристаллический порошок чёрного цвета (плотность 1,9-2 г/см³), полупроводник.

    Слайд 13

    Ромбическая сера - вид октаэдров со срезанными углами. Светло – жёлтый порошок. Моноклинная сера - в виде игольчатых кристаллов жёлтого цвета. Пластическая сера- резинообразная масса тёмно –жёлтого цвета. Можно получить в виде нитей.

    Слайд 14

    Аллотропные модификации фосфора

    Р(красный фосфор) (белый фосфор) Р4 Без запаха, не светится в темноте, не ядовит! Имеет чесночный запах, светится в темноте, ядовит!

    Слайд 15

    С4Н8

    Перед вами картина неизвестного художника. Приобрести её сможет тот, кто предложит больше всего изомеров. Стартовая цена – 2 изомера.

    Слайд 16

    СН2 = СН – СН2 – СН3 СН2 = С – СН3 Бутен-1СН3 2-метилпропен-1 (метилпропен) Бутен-2 СН3 СН = СН–СН3 С = С С = С СН3 СН3 СН3 СН3 Н Н Н Н Цис – бутен - 2 Транс – бутен - 2 Н2С СН2 Н2С СН2 Циклобутан Н2С СН СН3 СН2 метилциклопропан

    Биоорганическая химия

    БОХ – это наука, изучающая биологическую функцию органических веществ в организме.

    БОХ возникла во 2-ой половине ХХ века. Объектами ее изучения служат биополимеры, биорегуляторы и отдельные метаболиты.

    Биополимеры – высокомолекулярные природные соединения, которые являются основой всех организмов. Это пептиды, белки, полисахариды, нуклеиновые кислоты (НК), липиды и др.

    Биорегуляторы – соединения, которые химически регулируют обмен веществ. Это витамины, гормоны, антибиотики, алкалоиды, лекарственные препараты и др.

    Знание строения и свойств биополимеров и биорегуляторов позволяет познать сущность биологических процессов. Так, установление строения белков и НК позволило развить представления о матричном биосинтезе белка и роли НК в сохранении и передаче генетической информации.

    БОХ играет большую роль в установлении механизма действия ферментов, лекарств, процессов зрения, дыхания, памяти, нервной проводимости, мышечного сокращения и др.

    Основная проблема БОХ – это выяснение взаимосвязи структуры и механизма действия соединений.

    БОХ основана на материале органической химии.

    Лекция 1.

    Изомерия органических соединений

    В настоящее время насчитывается ~ 16 млн. органических веществ.

    Причины многообразия органических веществ.

    1. Соединения атомов С друг с другом и др. элементами периодической системы Д. Менделеева. При этом образуются цепи и циклы:

    Прямая цепь Разветвленная цепь


    2. Гибридизация – выравнивание электронных облаков по форме и энергии. Атом С может находиться в трех гибридных состояниях:sp–линейная конфигурация, sp 2 – треугольная конфигурация, sp 3 – тетраэдрическая конфигурация.

    3. Гомология – это существование веществ с близкими свойствами, где каждый член гомологического ряда отличается от предыдущего на группу
    –СН 2 –. Например, гомологический ряд предельных углеводородов:

    4. Изомерия – это существование веществ, имеющих одинаковый качественный и количественный состав, но различное строение.

    А.М. Бутлеров (1861) создал теорию строения органических соединений, которая и по сей день служит научной основой органической химии.

    Основные положения теории строения органических соединений:

    1) атомы в молекулах соединены друг с другом химическими связями в соответствии с их валентностью;

    2) атомы в молекулах органических соединений соединяются между собой в определенной последовательности, что обусловливает химическое строение молекулы;



    3) свойства органических соединений зависят не только от числа и природы входящих в их состав атомов, но и от химического строения молекул;

    4) в молекулах существует взаимное влияние атомов как связанных, так и непосредственно друг с другом не связанных;

    5) химическое строение вещества можно определить в результате изучения его химических превращений и, наоборот, по строению вещества можно охарактеризовать его свойства.

    Рассмотрим некоторые положения теории строения органических соединений.

    в чём причина многообразия веществ? помогите срочно, завтра химия, а я не могу найти ответ на этот вопрос! и получил лучший ответ

    Ответ от Подсолнушек[гуру]
    Причины многообразия органических веществ: химическое строение, элементарный (качественный) состав. Примеры углеводорода и кислородсодержащих органических соединений
    К органическим веществам относят углеродсодержащие вещества, преимущественно образующиеся в живых организмах. На сегодня, многие органические вещества могут быть получены искусственно в лаборатории. Синтезировано большое количество органических соединений, не встречающихся в природе.
    Общее число известных органических веществ превышает 10 миллионов, в то время как неорганических – около 100 тысяч. Такое многообразие органических соединений связано со способностью атомов углерода соединяться в цепи различной длины. Связи между атомами углерода могут быть одинарными и кратными: двойными, тройными. При этом вещества могут иметь одинаковую молекулярную формулу, но разное строение и свойства (это явление получило название изомери́и) .
    В состав органических веществ входят углерод, водород, кислород, а также азот, фосфор, сера. Кроме того, могут входить практически любые элементы.
    Углеводороды – вещества, состоящие из двух элементов: углерода и водорода.
    Метан (его также называют болотный, рудничный газ, т. к. он образуется при разложении органических остатков на дне болот, а также выделяется из пластов каменного угля в рудниках) . Состоит из одного атома углерода, соединенного ковалентными связями с четырьмя атомами водорода. Молекулярная формула CH4. Структурная формула показывает порядок связи атомов в молекуле:
    H
    l
    H – C – H
    l
    H Угол между связями составляет 120º (электронные пары, образующие связь отталкиваются и располагаются на максимальном расстоянии друг от друга) .
    Ацетилен C2H2 содержит тройную связь:
    H – C ≡ C – H
    В качестве примера кислородсодержащих органических веществ можно назвать метиловый (древесный) спирт CH3OH (систематическое название метанол) ,
    этиловый спирт C2H5OH (этанол) ,
    уксусную кислоту CH3COOH
    Готовый ответ на уроке.

    Ответ от Ёидор Сидоров [гуру]
    В том, что даже в земных условиях молекулы могут соединяться в немыслимо большое количество комбинаций друг с дружкой. А если взять их возможности на нашем не шибко горячем Солнышке? Это в миллиарды раз немыслимее множество получается? А если взять горячие солнышки других галактик? А если еще более горячие солнышки других вселенных? А? Вот то -то и оно.


    Ответ от -=TeRNoL=- [новичек]
    Причина в различных молекулярных цепочках вроде)